Удаление аммония в производстве бутилированной воды

Андрей Гречушкин, канд. тех. наук,
компания «ЭКОДАР» (Москва)

Елена Симакова, канд. пед. наук,
МГТУ им. Н. Э. Баумана (Москва)

 

Значительную долю рынка бутилированных вод занимают крупные производители, и в последние годы она только увеличивается. В то же время большую часть мирового, да и российского производства бутилированной воды обеспечивают средние и малые предприятия.


Водоподготовка на малых и средних предприятиях

Наряду с предприятиями, специализирующимися на выпуске бутилированной воды, на рынке также присутствуют индивидуальные предприниматели и предприятия, для которых розлив бутилированной воды является непрофильным или сопутствующим бизнесом и др. Малые производители в большинстве своем ориентированы на местный рынок, при этом в ряде случаев розлив воды носит сезонный характер.

Далеко не всегда такие производители могут позволить себе иметь в штате специалистов, обладающих большим опытом работы в области водоподготовки и обслуживания водоочистного оборудования. Вместе с тем, несмотря на небольшие объемы производства и квалификацию персонала, выпускаемая предприятиями бутилированная вода должна полностью удовлетворять требованиям СанПиН 2.1.4.1116–02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости». Может быть, на первый взгляд это покажется странным, но требования к надежности работы оборудования систем водоподготовки для малых и средних производств не ниже, а зачастую и выше, чем для крупных.

Одной из часто возникающих вопросов в подготовке воды для розлива является удаление из воды иона аммония, поскольку СанПиН 2.1.4.1116–02 довольно жестко регламентирует концентрацию аммония (для воды первой категории предельно допустимая концентрация составляет 0,1 мг/л, для воды высшей категории – 0,05 мг/л). Природные воды часто имеют многократное превышение по данному показателю. И хотя тема очистки воды от аммония достаточно широко освещена в литературе [1, 2], нормативная база подготовки воды для розлива и особенности малого и среднего производства накладывают свои ограничения, на которых следует остановиться подробнее.


Методы удаления аммония из воды

Используемые в водоподготовке основные методы удаления аммония сведены в таблицу (в той или иной форме она приводится в различной литературе). Рассмотрим их применимость при подготовке бутилированной воды в условиях малого и среднего производства.


Методы удаления аммония из воды

Метод

Произв-сть, м3

Затраты

Концентрация аммония в исходной воде,
не более, мг/л

Примечание

капитальные

эксплуатац.

 Ионообменное умягчение воды на сильнокислотных катионообменных смолах

0,5–10,0

Низкие

Высокие

0,2–0,3

Удаление солей жесткости, потребление поваренной соли

 Сорбция на неорганических сорбентах

0,5–10,0

Средние

Высокие

10

Удаление солей жесткости, потребление поваренной соли

 Сорбция на природном цеолите (клиноптилолите)

0,5–10,0

Средние

Средние

10

Удаление тяжелых металлов, потребление поваренной соли

Обратноосмотический (в том числе нанофильтрация)

0,1–100

Высокие

Низкие

1–5

Обессоливание, умягчение, потребление ингибитора

Использование окислителей (хлор, озон, ClO2, хлорамин, KMnO4)

5–1000

Средние

Средние

Зависит от вида окислителя и применяемой технологии

Удаление органики, появление органохлоридов (в случае использования препаратов хлора)

Биологический (нитрификация)

5–10 000

Средние

Низкие

1

Появление нитратов

5–10 000

Высокие

Низкие

10

 

Использование окислителей. Метод очистки воды, основанный на использовании окислителей, для малых и средних производителей неприменим, поскольку согласно СанПиН 2.1.4.1116–02 запрещено обрабатывать активным хлором воды, предназначенные для розлива, а другие окислители (озон, СlO2, хлорамин, KMnO4) неэффективны для удаления аммония [1].

Биологический метод. Интересным и эффективным методом удаления аммония является его биологического окисления до нитрит-аниона‎, а затем до нитрат-аниона при помощи бактерий Nitrosomonas. Его упрощенно можно представить реакцией:

NH4+ + 2O2 → NO3 + 2H+ + H2O

Для осуществления процесса при невысоких исходных концентрациях аммония применяются фильтры с загрузкой гранулированными материалами (которые благоприятны для закрепления на них бактерий), при высоких концентрациях (когда растворенного в воде кислорода недостаточно) – аэрируемые реакторы.
Для протекания реакции биологического окисления в воде, кроме наличия кислорода, необходимо присутствие (или искусственное добавление в воду) достаточного для роста бактерий количества фосфора; вода должна иметь , концентрацию органических веществ рН > 7,5 и температуру не ниже 8–10 ºС. Следует также учитывать, что процесс естественного обсеменения гранулированного материала фильтра или реактора и достижения максимальной эффективности длится от 1 до 3 мес.

При всех своих достоинствах биологический метод удаления аммония практически неприменим на небольших системах. Заказчик небольшой системы водоподготовки хочет видеть в ней такие технические и технологические решения, которые позволят эксплуатироватьее  в автоматизированном или автоматическом режиме. Участие человека в управлении процессом должно быть сведено к минимуму. Простои производства (зачастую небольшое производство бутилированной воды носит сезонный характер) не должны отрицательно сказываться на работоспособности оборудования. В таких условиях поддерживать жизнеспособность бактерий на загрузке фильтров с привлечением высококвалифицированного персонала экономически нецелессобразно.

Обратноосмотический метод. В отличие от биологического метода обратноосмотический процесс легко поддается автоматизации. Функции эксплуатирующего персонала при этом заключаются в периодическом приготовлении раствора ингибитора (иногда и раствора для коррекции рН), в контроле за показаниями приборов и в периодической, раз в несколько месяцев, автоматизированной промывке обратноосмотических мембран.

Однако в случае использования обратноосмотического метода имеет место неспецифическое удаление иона аммония, поскольку одновременно происходит удаление и других ионов, частичное обессоливание и умягчение воды. В зависимости от исходной концентрации аммония можно подобрать селективность обратноосмотических мембран и чаще всего добиться (в ряде случаев применяя подмес исходной воды к пермеату) требуемой концентрации аммония на выходе, сохраняя при этом приемлемый химический состав очищенной воды. Другим путем (при высоких исходных концентрациях аммония) является довольно глубокое обессоливание воды с последующей искусственной минерализацией пермеата.

Все же метод обратноосмотического удаления аммония следует использовать прежде всего для вод, в которых кроме аммония имеется превышение концентрации таких компонентов, как литий, натрий, сульфаты, бор и др.


Ионообменное умягчение воды на сильнокислотных катионообменных смолах. Частичное удаление аммония происходит также в процессе ионообменного умягчения воды на сильнокислотных катионообменных смолах. Это связано с определенным расположением аммония в ряду селективности для сильнокислотных катионообменных смол:

Литий < Натрий < Калий ≈ Аммоний < Магний < Цинк < Кальций < Стронций < Барий

Эффективность метода сильно зависит от химического состава исходной воды, в частности от концентрации в ней натрия и калия. Возможность применения данного метода следует рассматривать при превышении исходной концентрации аммония над предельно допустимой концентрацией не более 30%.

Сорбция на неорганических сорбентах. Более эффективным способом удаления аммония является его сорбция на неорганических сорбентах, таких как синтетические и природные цеолиты. Примером синтетического цеолита является ионообменный материал, получаемый из алюмосиликата натрия. На отечественном рынке довольно широко распространен такой неорганический ионообменный материал под торговой маркой Crystal-Right CR-100. Он служит для обезжелезивания, деманганации и умягчения воды методом ионного обмена и сорбции аммония. Такая универсальность данного материала в рассматриваемой нами области подготовки воды для розлива часто является и его недостатком, так как далеко не всегда требуется одновременное значительное умягчение воды. Емкость Crystal-Right CR-100 по аммонию достаточно высока и составляет до 980 мг на 1 дм3 материала. Применять материал допустимо на водах с исходной минерализацией не менее 80 мг/л, жесткостью не менее 1 мг/л и рН > 5,7. Синтетический цеолит можно использовать в стандартных установках умягчения, при этом по сравнению с процессом умягчения на катионообменных смолах меняются лишь технологические параметры, такие как скорость фильтрования, количество регенерационного раствора хлорида натрия и продолжительность стадий регенерации.

Сорбция на природном цеолите (клиноптилолите). Метод удаления аммония сорбцией на природном цеолите (клиноптилолите – клиноптилолитсодержащем туфе) не получил распространения в крупных системах розлива воды из-за значительной стоимости эксплуатационных затрат, прежде всего на регенерационную поваренную соль. Для небольших систем данный метод достаточно привлекателен из-за низких капитальных затрат, простой автоматизации процесса и, что особенно важно в области подготовки бутилированных вод, незначительного влияния на химический состав воды. Cорбционная емкость по аммонию, по сравнению с синтетическими цеолитами, невелика и составляет от 0,1 до 30 г на 1 дм3 материала в зависимости от месторождения клиноптилолита и условий проведения процесса регенерации.

Пример небольшой системы водоподготовки

На рисунке показана небольшая система подготовки для розлива воды первой категории производительностью 0,7 м3/ч.

Система подготовки (+для розлива) воды первой категории производительностью 0,7 м3

В данном случае стояла задача снижения концентрации аммония с 0,6 мг/л до требований СанПиН 2.1.4.1116–02 для воды первой категории – не более 0,1 мг/л. Также исходная вода имела 70%-е превышение по концентрации фтора. Проведенные предварительные расчеты показали, что обработка воды только на установке обратного осмоса не позволит получить воду с приемлемыми вкусовыми качествами.

Была принята схема с предварительной обработкой воды на природном цеолите для снижения концентрации аммония (на рисунке – фильтр на дальнем плане) и последующей обработкой воды на установке обратного осмоса с подмесом к пермеату воды с выхода фильтра. Благодаря такой схеме удалось получить воду с благоприятными вкусовыми качествами и концентрациями аммония и фтора на уровне требований к воде высшей категории (<0,05 и 0,8 мг/л соответственно).

Таким образом, из допустимых к применению в области подготовки бутилированных вод методов удаления аммония для малых и средних производств более целесообразно использовать методы сорбции на синтетических и природных цеолитах, обратноосмотический метод и при невысоких превышениях по аммонию – метод ионного обмена на синтетических катионообменных смолах.


 

Библиографический список

  • Технический справочник по обработке воды : В 2 т. Т. 2 / Пер с фр. СПб. : Новый журнал, 2007. 922 с.
  • Никашина, В. А. Очистка артезианской питьевой воды от иона аммония на природном клиноптилолитсодержащем туфе. Математическое моделирование и расчет процесса сорбции / В. А. Никашина, И. Б. Серова, Э. М. Кац // Сорбционные и хроматографические процессы. 2008. Т. 8. Вып. 1. С. 23–29.



Дата публикации: 11.01.2012